705. Steroids. Part XVII.* The Structure of Diginin and Diginigenin.

By C. W. SHOPPEE, RUTH E. LACK, and A. V. ROBERTSON.

The digitenolides diginin and digitalonin are the 3-D(+)-diginoside and the 3-D(+)-digitaloside of the digitenol diginigenin, which is shown to be 3β -hydroxy- 12α , 20α -epoxy- 14β -pregn-5-ene-11,15-dione. Digifolein and lanafolein are the 3-D(+)-diginoside and 3-D(-)-oleandroside of 2β -hydroxydiginigenin (digifologenin).

THE digitenolides are physiologically inactive glycosides of pregnane derivatives and occur, together with cardioactive glycosides (cardenolides) of 5 α - or 5 β -norcholane derivatives, in plants, especially in *Digitalis* species. The digitenolides contain the 2,6-deoxy-hexose sugars characteristic of the cardenolides, give the Keller-Kiliani reaction, and are readily hydrolysed by acid to aglycones termed digitenols. The digitenolides and derived digitenols give the Legal test, but contain no unsaturated γ -lactonic ring and do not exhibit the ultraviolet absorption (λ_{max} 216–218 m μ , log ε 4·0–4·3) characteristic of the cardenolides.

Diginin, the first and simplest digitenolide to be discovered and for 20 years the sole

* For a preliminary and partial presentation of this work see Proc. Chem. Soc., 1962, 65. Part XVI, preceding paper.

representative of the class, was isolated by Walter Karrer¹ from the leaves of D. purpurea. It was shown by Shoppee and Reichstein $^{2, 3}$ to be the D(+)-diginoside of the digitenol diginigenin, C21H28O4. Extensive chemical investigation of diginigenin by Shoppee 4, 5 characterised the four oxygen atoms and furnished the parent hydrocarbon "diginane," $C_{21}H_{36}$, but led only to tentative structural conclusions. Some years later, Press and Reichstein ⁶ identified "diginane " as 5α , 14β , 17α -pregnane, and so proved that diginigenin belongs to the pregnane series.

Diginin has subsequently been isolated in small quantities from D. lanata seeds,⁷ D. purpurea seeds 8 and leaves, 9-12 and from a drug preparation [" Verodigen " (Boehringer)] derived from D. purpurea, 13 , 14 and has been detected by paper chromatography. 15 The related glycoside digitalonin, isolated from D. purpurea leaves, has been shown by Satoh et al.^{16, 17} to be diginigenin D(+)-digitaloside.

Numerous digitenolides have been isolated during the last five years from Digitalis species by the use of chromatographic techniques; these digitenolides, the derived digitenols, and the constituent sugars are listed in Table 1.

TABLE 1.

Digitenolides, digitenols, and sugars.

Digitenc	olide	Aglycor	ne	Sugar		Source
Diginin Digitalonin	$\left\{ \begin{array}{c} C_{28}H_{40}O_{7}\\ C_{28}H_{40}O_{8} \end{array} \right\}$	Diginigenin	$\mathrm{C_{21}H_{28}O_4}$	D-Diginose D-Digitalose	$C_7H_{14}O_4 \\ C_7H_{14}O_5 $	D. purpurea D. lanata
Digifolein Lanafolein	$\left\{ \begin{smallmatrix} C_{28}H_{40}O_8\\ C_{28}H_{40}O_8 \end{smallmatrix} \right\}$	Digifologenin	$\mathrm{C_{21}H_{28}O_5}$	D-Diginose D-Oleandrose	$C_7H_{14}O_4$ $C_7H_{14}O_4$	D. purpurea D. lanata
14α-Digipronin	$\mathrm{C}_{28}\mathrm{H}_{40}\mathrm{O}_{9}$	Digipronogenin	$\mathrm{C_{21}H_{28}O_5}$	D-Digitalose	$C_7H_{14}O_5$	D. purpurea D. lanata
Digipurpurin	$C_{39}H_{64}O_{14}$	Anhydrodigi- purpurogenin	$C_{21}H_{32}O_4$	3 D-Digitoxose	C ₆ H ₁₂ O ₄	
Purpnin Purpronin Digacetinin *	$\substack{\text{C}_{39}\text{H}_{62}\text{O}_{13}\\\text{C}_{39}\text{H}_{60}\text{O}_{14}\\\text{C}_{43}\text{H}_{64}\text{O}_{16}}$	Purpnigenin Purprogenin Deacetyldig- acetigenin	$\substack{ \mathrm{C_{21}H_{32}O_4}\\ \mathrm{C_{21}H_{30}O_5}\\ \mathrm{C_{21}H_{30}O_5} }$	3 D-Digitoxose 3 D-Digitoxose 3 D-Digitoxose (+2AcOH)	$C_{6}H_{12}O_{4}$ $C_{6}H_{12}O_{4}$ $C_{6}H_{12}O_{4}$	D. purpurea
		Genin B Genin D Genin E Genin F	$\substack{ \substack{ C_{21}H_{30}O_4\\ C_{21}H_{30}O_5\\ C_{21}H_{32}O_5\\ C_{21}H_{34}O_5} }_{ C_{21}H_{34}O_5}$	(+210011)	}	D. grandiflora Mill. (D. ambigua Murr.)
		* Diaceta	te of glyco	side C ₃₉ H ₆₀ O ₁₄ .		

Digifolein, described as "Crystal A,"^{8,9} was isolated by Satoh et al.⁹⁻¹¹ and by Tschesche and Grimmer ¹³ from D. purpurea; we have obtained digifolein from extracts of leaves of *D. lanata*. Lanafolein was obtained by Tschesche *et al.*, ^{13, 14} and Tschesche and Lipp ¹⁸ showed that digifole is digifologenin D(+)-diginoside ¹³ whilst lanafole is digifologenin D(-)-oleandroside.14, 18

¹ Walter Karrer, "Festschrift für Emil Barell," Birkhäuser, Basle, 1936, p. 228.

- ² Shoppee and Reichstein, Helv. Chim. Acta, 1940, 23, 975.
- Shoppee and Reichstein, *Helv. Chim. Acta*, 1942, 25, 1611. Shoppee, *Helv. Chim. Acta*, 1944, 27, 246. Shoppee, *Helv. Chim. Acta*, 1944, 27, 426.

- ⁻ Snoppee, *Hev. Chim. Acta*, 1944, 27, 420.
 ⁶ Press and Reichstein, *Helv. Chim. Acta*, 1947, 30, 2127.
 ⁷ Mohr and Reichstein, *Pharm. Acta Helv.*, 1949, 24, 246.
 ⁸ Okada and Yamada, *J. Pharm. Soc. Japan*, 1953, 73, 525.
 ⁹ Satoh, Yoshito, Ishii, and Nishimura, *Chem. and Pharm. Bull. (Japan)*, 1953, 1, 305, 396.
 ¹⁰ Satoh, Ishii, and Oyama, *J. Pharm. Soc. Japan*, 1955, 75, 1025.
 ¹¹ Satoh, Ishii, and Oyama, *J. Pharm. Soc. Japan*, 1955, 75, 1173.
 ¹² Kaiser, Haack, and Spingler, *Annalen*, 1957, 603, 75.
 ¹³ Tschesche and Grimmer *Chem. Rev.* 1055, 95, 1560.

- ¹³ Tschesche and Grimmer, Chem. Ber., 1955, **88**, 1569.
 ¹⁴ Tschesche and Buschauer, Annalen, 1957, **603**, 59.
 ¹⁵ Gunzel and Weiss, Z. analyt. Chem., 1955, **148**, 250; Pharmazie, 1955, **10**, 725.
 ¹⁶ Satoh, Ishii, Oyama, Wada, and Okumura, Chem. and Pharm. Bull. (Japan), 1956, **4**, 284.
 ¹⁷ Schultz Mich. Med. 2019.
- ¹⁷ Satoh, Wada, İshii, Oyama, and Okumura, Chem. and Pharm. Bull. (Japan), 1957, 5, 253.
- ¹⁸ Tschesche and Lipp, Annalen, 1958, **615**, 210.

Digipronin, first isolated by Satoh et al.¹⁰ from D. purpurea and lanata and described as "Crystal C," and subsequently investigated by Satoh et al.^{16, 19, 20} and by Tschesche. Lipp, and Grimmer,^{18, 21} is 14α -digipronogenin D(+)-digitaloside; the structures of 14α and 14β-digipronogenin [(VIII) and (IX), see below] have recently been established by Satoh²² but we were unaware of this until our work on diginigenin, now reported, had been completed. Digipurpurin, described as "Crystal D," and isolated by Tschesche and Grimmer ^{13, 21} and by Satoh,¹⁶ purpnin,^{10, 19, 21, 23} and purpronin ²³ appear to be closely related tri-D(+)-digitoxosides. Digipurpurin, on acid hydrolysis, gives anhydrodigipurpurogenin¹³ and is rapidly altered by water at 100° to give purpnin; ²¹ purpnin, on acid hydrolysis, yields purpnigenin ¹⁹ [v_{max.} (in Nujol) 1680 cm.⁻¹], regarded by Satoh et al.²³ as 20-oxopregn-5-ene-3β,14α,15α-triol, whilst purpronin [v_{max} (in Nujol) 1712, 1689 cm.⁻¹] similarly yields purprogenin regarded by Satoh et al.²³ as 3,14a,15a-trihydroxypregn-5-ene-1,20- or 12,20-dione, so that digipurpurogenin $[v_{max}]$ (in potassium bromide) 1700 cm.⁻¹] is probably 1ξ , 3β , 14α - or -3β , 12ξ , 14α -trihydroxypregn-5-en-20-one.

Digacetinin, isolated by Tschesche, Hammerschmidt, and Grimmer,²⁴ gives, on acid hydrolysis, acetic acid, three mols. of D(+)-digitoxose, and digacetigenin, which is hydrolysed by potassium hydrogen carbonate to deacetyldigacetigenin; these compounds show ultraviolet absorption in the range 275–288 m μ (log $\epsilon 2.15$ –1.67), but resemble diginin and diginigenin in possessing two infrared carbonyl maxima (in potassium bromide, 1750, 1703 cm.⁻¹).

A biologically inactive but chemically uncharacterised digitenolide, "DA7," m. p. 287°, $[\alpha]_{p}$ +31°, has been isolated by Stoll and Kreis²⁵ from the leaves of *D. grandiflora* (*D.* ambigua), from which source Repic and Tamm²⁶ obtained a mixture of non-crystalline digitenolides giving on mild acidic hydrolysis four crystalline digitenols, "Genins B, D, E, and F," in quantities too small for structural investigation. Stoll and Renz ^{27, 28} have isolated two biologically inactive digitenolides "DF1" and "DF11" from *D. ferruginea* and *D. mariana*, respectively; "DF1," m. p. 158–160°, $[\alpha]_p$ –182°, and "DF11," m. p. 199—208°, $[\alpha]_p$ –181°, λ_{max} 285 mµ (log ϵ 2.15), give the Legal test and appear to be α -ketols since they reduce triphenyltetrazolium chloride,²⁹ whilst "DF11" (in potassium bromide) exhibits v_{max} 3500 (OH), 1735, 1710 (2CO), 1635 (C=C), 1090, 1070, 1030 (C•O•C), 900, 840, 820 cm.⁻¹ (CO·C·O·C) and therein resembles diginin.

Other pregnane compounds have been isolated from plants; 3β-hydroxy-pregn-5-en-20-one and -5α -pregnan-20-one occur as D(+)-glucosides in uzara root and in Xysmalobium undulatum,³⁰ whilst a wide variety of C₂₁-aza-steroids occur in Holarrhena and Fontumia species.

Diginin,^{2, 13, 14} $C_{28}H_{40}O_7$, $[\alpha]_D - 176^\circ$, digifolein,¹³⁻¹⁵ $C_{28}H_{40}O_8$, $[\alpha] - 189^\circ$, and lanafolein,^{14, 15} $C_{28}H_{40}O_8$, $[\alpha]_D - 204^\circ$, possess closely similar chemical properties. All give intense violet colours with 3,5-dinitrobenzoic acid and alkali (Kedde reaction), reduce ammoniacal silver solution (Tollens's reagent) immediately at 20°, and react with triphenyltetrazolium chloride. All give yellow colours with tetranitromethane in chloroform solution and are unsaturated; all possess two carbonyl groups. One carbonyl group is reduced by brief treatment with sodium borohydride or catalytically with platinum in methanol, to give an acetylatable secondary hydroxyl group; the other carbonyl group is

- ¹⁹ Satoh, Ishii, Oyama, and Okumura, J. Pharm. Soc. Japan, 1955, **75**, 1573.
 ²⁰ Satoh, J. Pharm. Soc. Japan, 1959, **79**, 1474.
 ²¹ Tschesche, Lipp, and Grimmer, Annalen, 1957, **606**, 160.

- Satoh, Chem. and Pharm. Bull. (Japan), 1960, 8, 270.
 Satoh, Ishii, and Oyama, Chem. and Pharm. Bull. (Japan), 1960, 8, 657.
- ²⁴ Tschesche, Hammerschmidt, and Grimmer, Annalen, 1958, 614, 136.
- 25 Stoll and Kreis, Helv. Chim. Acta, 1951, 34, 1431. 26
- Repic and Tamm, Helv. Chim. Acta, 1957, 40, 689.
- Stoll and Renz, Helv. Chim. Acta, 1952, 35, 1310.
 Stoll and Renz, Verhandl. Naturforsch. Ges. Basel, 1956, 67, 392.
- ²⁹ Kiesewalter, Pharmazie, 1952, 7, 580.
- ³⁰ Tschesche and Snatzke, Annalen, 1960, **636**, 105.

			Ref. 13, 14	16, 17 13, 14 10 10 13 13 13 13 13 13 13 13 13 13 13 13 13	ih y the	Ref.	#	, 13, 14, 18 18 14 18 18 18 18	26	at of _{^{vmax.} s band at}
			Mediun CHCl ₃ KBr KBr	KBr KBr KBr KBr KBr KBr KBr KBr KBr KBr	These " c as indicat	Mediur CHCI CH ₂ C	CHCL	KBr KBr KBr	KBr KBr KBr	double th till show
	les.		CO·C·O·C 891, 872, 853 880, 850, 810	907, 877, 845 907, 877, 849	i isomers. ¹⁸ ** ,15β-diols diols, d	CO-C-O-C 	890, 870		$\begin{array}{r} 886,845,823\\\\ 887,845,825\\\\\end{array}$	roup; intensity (†† Diacetate s
	troscopic properti	cm. ⁻¹)	C-O-C 060, 1032 065, 1030	083, 1070, 1032 083, 947, 927	be a mixture of 2 5β -alcohols or 11a, ties.	C-O-C 1065, 1040 1070, 1042 1093, 1070, 1042	1085, 1062, 1037		1058, 1045 1035 1060, 1045 1075, 1040	with reactive CO gr nd at 3450 cm. ⁻¹ .
	es: spect	nfrared (1095, 1 1090, 1	1092, 1,	Shown to dihydro-1 ic proper Infr	C=C 1655 1660 1660	1660 ± 1655	1663 1663 1652		oincides v hows baı
	gitenolid	Ι	C=C 1655 1640 1635	1655 1653 1653 1648 1643 1643	acid. § ıally 5,6- ctroscopi	C=0 † 1712 1712 1710	$\begin{array}{c}1716\\1710\\1712\\1712\end{array}$	1710 1724 1716 	$1712 \\ \\ 1692$	l group contraction of the still so that a sti
TABLE 2.	etrahydrodi		C=0 † 1712 1726 1710	1723 1715 1715 1710 1712 1723 	inum-acetic unds are actu TABLE 3. atives: spe	C=O * 1735 1736 1738	$1735 \ddagger 5$	1740 1745 	1754 1742 1748	CO of acety ** Diaceta trahydro '' ir
	enolides, t		C=O * 1735 1755 1740	1743 1743 	agent plat o."-compo and deriv	ÓH 3585 3585 3610	3610, 35 3680, 36	3475 3475 3440 3410 3370	3450 3390 3425 3380 3380	in CS ₂ . § 1450 cm. ⁻¹ . " and " te
	lihydrodigite		ОН 3585 3500 3500	3500 3500 3480 3500 3500 3400 3400 3400 3400 3400	¶ Reducing se " tetrahydi Digitenols U.V. (mµ)	μ. log ε 0 1-93 9 1-95 1-93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d 1666 cm. ⁻¹ no band at 3 on " dihydro
	nolides, d	(n lu	$\log \varepsilon$ 2.00 1.94	$1:97 \\ 1:97 \\ 1:56 \\ 1:55 \\ $	b paper.	3333 	00000000000000000000000000000000000000		88 89 89 89 89 89	1720, an state has ootnotes
	Digiter	U.V. (n	λ _{max} . 310 309	310 309 306 306 306 306 306 306 306 306	ups. ‡ This 5β-alcohols.					t ν_{max} . 1745, Monoace er. §§ See fo
			Compound Diginin	Digitalonin Digitolein Lanafolein Dihydrodiginin ** Dihydrodigitolein ** Tetrahydrodiginin Tetrahydrodigitolein § †† Tetrahydrodigitolein § †† Tetrahydrodigitolein § †† Tetrahydrolanafolein § ††	*† Two carbonyl gro compounds are actually 1. spectra.	Aglycone Diginigenin, m. p. 108—112 Diginigenin, m. p. 150—153	Diginigenin acetate Dihydrodiginigenin §§ Tetrahydrodiginigenin §§	Digifologenin	Genin B¶ Genin D ** Genin E Genin F ††	*† Two CO groups. 1735 cm. ⁻¹ in diginigenin. 3367 cm. ⁻¹ . ‡‡ This pape

[1962]

relatively unreactive and resists hydrogenation with platinum in acetic acid, but is reduced by extended treatment with sodium borohydride again to give an acetylatable secondary hydroxyl group. All possess an inert oxygen atom regarded as oxidic. The spectroscopic properties of diginin, digifolein, lanafolein, and their dihydro- and tetrahydro-derivatives, collected in Table 2, confirm the presence of the foregoing molecular features, and the successive disappearance of the two carbonyl groups by reduction.

The ultraviolet absorption maximum at 300—310 m μ remains visible in the dihydrodigitenolides with a decreased extinction coefficient, but disappears in the tetrahydrodigitenolides, and so appears to result from several chromophores, which must include both carbonyl groups.

The infrared peaks in the 950—800 cm.⁻¹ region, regarded by Repic and Tamm ²⁶ as characteristic of α -epoxy-ketones, are present but with low intensities.

Diginigenin, like digifologenin,¹⁸ is difficult to obtain crystalline. Diginin is usually contaminated ^{13, 28} with digifolein; thus, the original specimen of diginin, isolated by Walter Karrer in 1936 ¹ and made available by Hofmann-LaRoche Ltd., Basle, to one of us in 1939, has very kindly been examined by Professor Tschesche by partition chromatography on silica gel in the system formamide-benzene-chloroform and found to consist of diginin (75%), digifolein (10%), and lanafolein (5%). Further, diginigenin, m. p. 115°, $[\alpha]_p -226^{\circ},^2$ m. p. 108—112,²⁶ is probably a hydrate, whilst the crude product obtained by brief hydrolysis of diginin with 0.05N-acid contains a quantity of an $\alpha\beta$ -unsaturated ketone formed by aerial oxidation. We have been able to obtain the hydrated form, m. p. 108°, but by hydrolysis under nitrogen, repeated azeotropic distillation of the hydrolysis product with benzene, and crystallisation from dry ether, we have obtained the anhydrous form, m. p. 150—153°, $[\alpha]_p -227^\circ$.

form, m. p. 150–153°, $[\alpha]_{\rm D}$ –227°. Diginigenin, $C_{21}H_{28}O_4$, and digifologenin, $C_{21}H_{28}O_5$, by mass spectrometry give the appropriate molecular weights of 344 and 360, but fragmentation of the highly oxygenated molecule is so extensive that no useful structural information can be derived from the mass spectrum.

Diginigenin,^{2, 4, 5} $[\alpha]_p$ –226°, and digifologenin,^{13, 14, 18} $[\alpha]_p$ –269°, show closely similar chemical properties. Both contain one double bond and give vellow colours with tetranitromethane; both reduce ammoniacal silver solution at once at 20°, and give positive reactions with triphenyltetrazolium chloride and in the Kedde test; both contain two carbonyl groups. One carbonyl group is reactive and reduced (a) by sodium borohydride rapidly to yield, respectively, dihydrodiginigenin (giving a diacetate) and dihydrodigifologenin (giving a triacetate ¹⁴), which give negative reactions with ammoniacal silver solution at 20° and in the Kedde test, and a very weak positive reaction with triphenyltetrazolium chloride, (b) catalytically by platinum in methanol or by platinum in acetic acid (which also saturates the double bond). The second carbonyl group is unreactive and not detected by use of a Grignard reagent; ¹⁴ it resists hydrogenation with platinum in acetic acid, but is reduced by extended treatment with sodium borohydride. Both compounds contain an inert oxygen atom regarded as oxidic. Whilst diginigenin contains a single secondary hydroxyl group characterised in a monoacetate,² digifologenin contains two secondary hydroxyl groups, present as a $cis - \alpha$ -glycol grouping, readily cleaved by periodic acid, and characterised in an isopropylidene derivative.¹⁸

The spectroscopic properties of diginigenin, digifologenin, and their reduction products, collected in Table 3, confirm the presence of the various structural features outlined above, and the successive disappearance of the two carbonyl groups on reduction. The "genins B, D, E, and F" of Repic and Tamm ²⁶ exhibit similar properties and probably possess structures analogous to those of diginigenin and digifologenin.

Shoppee and Reichstein² originally considered that the reactive carbonyl group of diginin and diginigenin was aldehydic, but numerous unsuccessful attempts to obtain homogeneous acids by oxidation, *e.g.*, of diginigenin acetate, with chromium trioxide in acetic acid led Shoppee^{4, 5} to conclude that this carbonyl group (CO*) is ketonic, and to

locate the unreactive carbonyl group (CO[†]) at position 11 or 12, and on the basis of an assumed analogy with the *Digitalis* sapogenins to propose a 16 β ,21-epoxypregnene structure for diginin (I; R = C₇H₁₃O₃) and diginigenin (I; R = H).

Tschesche and Grimmer¹³ suggested that digifolein and digifologenin contain an aldehyde group, but clearly also included by implication diginin and diginigenin, since Tschesche and Buschauer ¹⁴ say: "Für das Carbonyl 2 [marked † below] war schon von Tschesche und Grimmer auch im Diginin eine Aldehydfunktion angenommen worden." This suggestion was made on account of the observed ultraviolet maxima (see Tables 2 and 3), which are consistent with the maxima found for strophanthidin ³¹ (5 β -series; λ_{max} 303 m μ , log ϵ 1.45), for corotoxigenin³² (5 α -series; λ_{max} , 310 m μ , log ϵ 1.5), and for other 19-aldehydic cardenolides and (boistroside, christyoside, gofruside, milloside, paulioside, stroboside; adonitoxigenin, antiarigenin, cannogenin, carpogenin, pachygenin), and for bufadienolides (bovogenin A, hellibrigenin, bufotalinin). The suggestion can also be supported by the observed infrared maxima of the unreactive carbonyl (CO⁺) in diginin, digifolein, and lanafolein (see Table 2) and in diginigenin and digifologenin (see Table 3), which can be reconciled with those observed for the 19-aldehyde group in strophanthidin 33 [$\nu_{max.}$ (in CHCl₃) 1718 cm.⁻¹] and in 19-oxoprogesterone ³³ [v_{max.} (in CHCl₃) 1717 cm.⁻¹]. Tschesche and Buschauer¹⁴ noted that digifolein and dihydrodigifologenin triacetate, like diginigenin acetate, are only oxidised very slowly by chromium trioxide in acetic acid and fail to yield carboxylic acids; however, they concluded that a 19-aldehyde group is present, and by analogy with the 14β-cardenolides suggested the 14β,21-epoxy-19-oxopregn-5-ene formulæ for diginigenin (II; X = H) and digifologenin (lanafologenin ¹⁸) (II; X = OH). Tschesche and Lipp,¹⁸ although observing that tetrahydrodigifolein-A triacetate was effectively stable to chromium trioxide in acetic acid, continued to consider digifologenin and its parent glycosides digifolein and lanofolein as possessing a 19-aldehyde group.

The nuclear magnetic resonance spectrum of diginin shows that it does not contain an angular aldehyde group. The spectrum discloses the presence of five methyl groups:* $C_{(18)}$, singlet at $\tau 8.45$ for methyl on quaternary $C_{(13)}$; $C_{(19)}$, singlet at $\tau 8.99$ for methyl on quaternary $C_{(10)}$ allylic to the 5,6-double bond; $C_{(21)}$, doublet at $\tau 8.72$ for methyl on tertiary $C_{(20)}$ with coupling constant J = 6.5 c./sec., typical of a freely rotating methyl group; $C_{(6')}$, doublet at $\tau 8.67$ (J = 6.5 c./sec.) for methyl on tertiary $C_{(5')}$ in the diginose residue; $C_{(3')}$, singlet at $\tau 6.60$ for methyl in the methoxyl group in the diginose residue.

The nuclear magnetic resonance spectrum of digifole in likewise contains signals for five methyl groups and shows that this compound does not contain an angular aldehyde group.

The nuclear magnetic resonance spectrum of diginigenin acetate discloses the presence of four methyl groups:* $C_{(18)}$, singlet at $\tau 8.46$ for methyl on quaternary $C_{(13)}$; $C_{(19)}$, singlet

³² Schindler and Reichstein, Helv. Chim. Acta, 1952, 35, 673, 730; 1953, 36, 370.

^{*} The assignment of peaks for the angular methyl groups is now the reverse of that given in our preliminary communication (*Proc. Chem. Soc.*, 1962, 65), for reasons to be discussed in a forthcoming paper on digifologenin.

³¹ Paist, Blout, Uhle, and Elderfield, J. Org. Chem., 1941, 6, 273; Fried, Linville, and Elderfield, *ibid.*, 1942, 7, 362.

³³ Nowacynski, Steyermark, Koiw, Genest, and R. N. Jones, Canad. J. Biochem. & Physiol., 1956, **34**, 1023.

at τ 8.99 for methyl on quaternary C₍₁₀₎ allylic to the 5,6-double bond; C₍₂₁₎ doublet at τ 8.73 (J = 6.5 c./sec.) for methyl on tertiary C₍₂₀₎; and singlet at τ 8.02 for methyl of the acetoxyl group.

A 19-aldehydic proton should appear as a sharp singlet between $\tau 0$ and $\tau 1$, and this region is completely bare in all three nuclear magnetic resonance spectra. The nuclear skeleton of diginin and diginigenin and of digifolein, lanafolein, and digifologenin thus contains two angular methyl groups.

The oxidic oxygen in diginin and diginigenin must be bound to $C_{(20)}$ to account for the chemical shift and splitting pattern of the 21-methyl group. These facts are expressed in the partial formulæ for diginin (III; $R = C_7 H_{13}O_3$, X = H) and diginigenin (III; R = X = H), whilst digifole in and lanafole in are represented by (III; $R = C_7 H_{13}O_3$, X = OH), and digifologenin by (III; R = H, X = OH).

The infrared spectra (Tables 2, 3) of diginin and diginigenin, and of digifolein, lanafolein, and digifologenin, suggest that the reactive carbonyl group (CO*) is attached to the fivemembered ring and that the unreactive carbonyl group (CO[†]) is attached to a six-membered ring. Since diginigenin is not an $\alpha\beta$ -unsaturated ketone,² positions 4 and 7 are excluded.

The optical rotatory dispersion curves of diginin, diginigenin, "dihydro "diginigenin, and "tetrahydro" diginigenin, indicate the positions of the two carbonyl groups. The sign and molecular amplitude of the Cotton effects for these four compounds are collected in Table 4, the lower section of which gives the sign and magnitude of the Cotton

	Optic	al rotatory dispers	sion ((in meth	anol).		
		Peak	and t	rough		Molecular ampl	itude
Compoun	d	φ	λ (m	ıμ)	$\Delta \dot{\lambda}$	$(10^{-2}a)^{-1}$	
Diginin		$\dots -13,650^{\circ} +11,100$	33 29	${5 \atop 3}$	42	-247	
Diginigenin		$\dots -12,300 + 10,300$	33 29	$\binom{8}{2}$	46	226	
Dihydrodiginigenin *	*	2500 + 350	33 28	$\binom{0}{5}$	45	-30	
Tetrahydrodiginigeni	n **	$\dots -1600 + 1780$	32 28	6 } 3 }	43	34	
Type	$10^{-2}a$	Type		10 ⁻² a		Type	10 ⁻² a
15-Oxo-14 α -steroid 15-Oxo-14 β -steroid	$^{+120}_{-125}$ *	16-Oxo-14 α -steroid 16-Oxo-14 β -steroid	 	$-279 \pm +150 \$$	17-Ox 17-Ox	o-14 α -steroid o-14 β -steroid	$^{+140\ddagger}_{+34\ddagger}$

INDLE T.	Table	4.	
----------	-------	----	--

* Djerassi, Closson, and Lippman, J. Amer. Chem. Soc., 1956, 78, 3163. † Lardon, Sigg, and Reichstein, Helv. Chim. Acta, 1959, 42, 1457. ‡ Djerassi, Riniker, and Riniker, J. Amer. Chem. Soc., 1956, 78, 6362. § Djerassi, personal communication. ** See footnotes in Table 2.

effect for 15-oxo-, 16-oxo-, and 17-oxo-steroids of the 14α - and 14β -series. In contrast to substituted cyclohexanones, where the ring structure is symmetrical about the carbonyl group and asymmetry is due to the second-order effects of substituents, the intrinsically skewed character of the five-membered ring in substituted cyclopentanones exerts a powerful influence on the symmetry of the carbonyl group. The very strong negative Cotton curves indicate the presence of a skewed cyclopentanone system ³⁴ and are consistent only with a 15-oxo-14 β -structure [10⁻²a -125] or a 16-oxo-14 α -structure [10⁻²a -279]. Because of the established 14 β -orientation of diginane (5 α , 14 β , 17 α -pregnane),⁶ the ring D carbonyl group is placed at position 15. The small negative Cotton curves given by "dihydro" diginigenin and "tetrahydro" diginigenin show that the main Cottonogenic "15-carbonyl group has been reduced to CH-OH. The smail amplitudes observed $(10^{-2}a - 30, -34)$ are compatible with values found ³⁵ for 11-oxo-14 β -steroids $(10^{-2}a - 48, -36)$ but not with those found ³⁵ for 12-oxo-14 β -steroids $(10^{-2}a + 130, +135)$;

⁸⁴ Klyne, Tetrahedron, 1961, 13, 29.

³⁵ Djerassi, Halpern, Halpern, Schindler, and Tamm, Helv. Chim. Acta, 1958, 41, 250.

x

RO

to

Me

(IV)

н

ture (III) can thus be replaced by (IV; $R = C_7 H_{13}O_3$ or H, X = H) $CH O_{-}$ for diginin and diginigenin and probably by (IV; $R = C_7 H_{13} O_3$ or H, X = OH) for digifolein, lanafolein, and digifologenin.

It may be noted that 11-oxo-12\beta-hydroxy-14\beta-steroids (e.g., sarmutogenin and its 3β , 12β -diacetate, leptogenin and its 3β , 12β -diacetate, methyl 3β , 12β -diacetoxy-14-hydroxy- 5β , 14β etianate) give positive Cotton curves $(10^{-2}a + 76, +117)$

+117),³⁵ as do other 11-oxo-14 α -steroids, whereas 11-oxo-12 α -hydroxy-14 β -steroids (e.g., caudogenin $3\beta_1 2\alpha$ -diacetate, inertogenin and its $3\beta_1 2\alpha$ -diacetate, inertogenin-etianic acid methyl ester 3β , 12α -diacetate) give negative Cotton curves ($10^{-2}a - 187, -92, -135$, -137) which have been attributed to conformational alteration affecting the asymmetry centres adjacent to the 11-carbonyl chromophore.³⁵

The very high $\Delta\lambda$ values observed suggest ³⁴, ³⁵ a group of the form OR adjacent to a carbonyl group; since these high values are shown, not only by diginin and diginigenin, but also by the Δ^5 -derivative 15-deoxy-15-hydroxydiginigenin \ddagger and by the saturated 15-deoxy- 5α , 6-dihydro-15-hydroxydiginigenin, the carbonyl group in question must be that at position 11 and a 12,x-oxidic structure is indicated. Such an 11-oxo-12,x-oxidic structure might be in part responsible for the ultraviolet absorption (λ_{max} 303–311 m μ , $\log \epsilon 1.55 - 2.0$ shown by diginin, digifolein, lanafolein, and their 15-deoxy-derivatives but not by their 11,15-dideoxy-11,15-dihydroxy-derivatives (see Tables 2 and 3 where they are listed as dihydro- or tetrahydro-derivatives). Tamm and his colleagues ³⁶ have found that the ultraviolet absorption maximum of a carbonyl group is increased by up to 18 m μ by an adjacent oxidic ring $(1\alpha, 2\alpha-\text{epoxy}-5\alpha-\text{cholestan}-3-\text{one}, \lambda_{\text{max}}, 302 \text{ m}\mu, \log \epsilon 1.43;$ 1β ,2β-epoxy-5α-cholestan-3-one, λ_{max} . 295 mµ, log ε 1.44; methyl 1α ,2α-epoxy-3-oxo-5αetianate, λ_{max} 300 m μ , log ϵ 1.36; methyl 1 ϵ , 2ϵ -epoxy-3-oxo-5 β -etianate, λ_{max} 295 m μ , $\log \in 1.33$; in the infrared spectrum, although the absorption maximum of the carbonyl group is unaffected, an adjacent oxidic ring leads to the appearance of characteristic frequencies in the 950–800 cm.⁻¹ region (cf. Tables 2 and 3).

We now propose formula (V) for diginigenin, with formula (VI) for the 15-deoxy-15hydroxy-derivatives (" dihydro "), and formula (VII) for the 11,15-dideoxy-11,15-dihydroxy-derivatives ("tetrahydro"). The quasi-equatorial 15^β-configuration is provisionally assigned because (a) the 15-carbonyl group is not hindered $^{2, 14}$ and reduction of unhindered carbonyl groups by sodium borohydride gives largely the equatorial epimers,³⁷ and (b) the 15β -hydroxyl group has been found to be acetylated readily by acetic anhydridepyridine at 20°; 2, 4, 5, 14, 18 the assignment is being further investigated. The axial 11 β -configuration is assigned because (a) the 11-carbonyl group is hindered², ¹⁴ and reduction of hindered carbonyl groups by sodium borohydride gives preferentially the axial epimers,³⁷ (b) reduction of 11-ketones by sodium borohydride gives exclusively 11 β -alcohols,³⁸ and (c) the resulting 11 β -hydroxyl group resists acetylation with acetic anhydride in pyridine at 100°.^{2, 5, 14, 18}

The reactions of diginigenin and its derivatives are readily interpreted on the basis of formula (V); to facilitate reference to the derivatives, the roman numeral used in earlier papers 2, 4, 5 is given in square brackets with the appropriate reference as a superscript, whilst an asterisk indicates that the compound reduced Tollens's reagent at once at 20°. Diginigenin (V) has an activated methylene group (positive Legal and Zimmerman tests)

 ³⁷ Barton, J., 1953, 1027.
 ³⁸ Fieser and Haymann, J. Amer. Chem. Soc., 1951, 73, 5252; Wendler, Graber, Jones, and Tishler, ibid., 1952, 74, 3630; Oliveto, Clayton, and Hershberg, ibid., 1953, 75, 486, 488.

t With the information now available it is possible to describe the "dihydro" and "tetrahydro" derivatives accurately.

³⁶ Striebel and Tamm, *Helv. Chim. Acta*, 1954, **37**, 1094; Schlegel, Tamm, and Reichstein, *ibid.*, 1955, **38**, 1013; Sallmann and Tamm, *ibid.*, 1956, **39**, 1340; Albrecht and Tamm, *ibid.*, 1957, **40**, 2216.

and yields a 16-piperonylidene derivative.⁵ 15-Deoxy- 5α , 6-dihydro- 15β -hydroxydiginigenin [VII²; IX⁵], on brief heating with acetic anhydride, gives a 3β -monoacetate, and with acetic anhydride-pyridine at 20° yields a 3β , 15β -diacetate; both the monoacetate and the diacetate are readily saponified, to regenerate the dialcohol. Diginigenin diacetate readily gives a semicarbazone;² it must therefore be, not an 11-oxo-14-enol acetate, but a 15-oxo-9(11)-enol acetate [VI2; VIII⁵] for which analogies exist.³⁹ By implication, the diacetate [XIII⁵] of 5α ,6-dihydrodiginigenin [XII⁵] is also a 15-oxo-9(11)-enol acetate, cleaved by ozonolysis to the 9,15-dioxo-9,11-seco-11-oic acid [XIV⁵].⁴⁰ Hydrogenation of the 9(11)-double bond ⁴¹ in [VI²; VIII⁵] by α -cis-addition gives the 3β , 11 β -diacetate of the triol $[XI^2; XVI^5]$ (hexahydrodiginigenin), which affords a 3β -monoacetate on brief heating with acetic anhydride and a 3β , 15β -diacetate with acetic anhydride-pyridine at 100° ; the latter is readily saponified, regenerating the triol.

Wolff-Kishner reduction of diginigenin under pressure at 180° gives three series of well-defined products. The first product [II4], as originally surmised,⁴ results by normal reduction of the reactive 15-carbonyl group, and it does not reduce Tollens's reagent at

20°. It gives no oxime under forcing conditions, and was regarded as still possessing the unreactive 11-carbonyl group; its infrared spectrum, however, shows no carbonyl absorption in the range 1780-1650 cm.⁻¹. We believe that the 11-carbonyl group is reduced to an 11a-hydroxyl group by alkali alkoxide; 42-44 thus Wolff-Kishner reduction of 3α ,12 β -dihydroxy-11-oxo-5 β -cholanic acid gives mainly 3α ,11 α ,12 β -trihydroxy-5 β -cholanic

³⁹ Kritchevsky, Garmaise, and Gallagher, J. Amer. Chem. Soc., 1952, 74, 483; Barton, Evans, Hamlet, Jones, and Walker, J., 1954, 747; Crawshaw, Henbest, and E. R. H. Jones, *ibid.*, 731.
 ⁴⁰ Cf. Elks, J., 1960, 3333.

⁴¹ Shoppee, Helv. Chim. Acta, 1940, 23, 740.

- ⁴² Sondheimer, Yashin, Rosenkranz, and Djerassi, J. Amer. Chem. Soc., 1952, 74, 2696; 1953, 75, 1282
 - 43 Heusser, Anliker, and Jeger, Helv. Chim. Acta, 1952, 35, 1537.

44 Hershberg et al., J. Amer. Chem. Soc., 1952, 74, 4470; 1953, 75, 269, 1505.

acid and its three 3a,11,12-diastereoisomers.^{45, 46} Compound [II4] and its 5a,6-dihydroderivative [III4] readily give 3β -monoacetates with hot acetic anhydride; unfortunately more vigorous conditions of acetylation, possibly leading to 3β , 11α -diacetates, were not investigated. We have attempted to obtain the 11-keto-analogue of [II4], 15-deoxodiginigen, by the thioketal-nickel procedure but, like 14β-digitogenone,⁴⁷ diginigenin fails to form a thicketal. Compound [III⁴], originally thought to possess an 11-carbonyl group, survives attempted Wolff-Kishner reduction; oxidation regenerates the 11-carbonyl group to give the 3,11-diketone [IV⁴], from which Wolff-Kishner reduction removes the

Reagents: I, H2-Pt. 2, CrO3. 3. Wolff-Kishner redn. 4, Zn-Hg + HCI.

3-carbonyl group to furnish the 11-ketone $[V^4]$ (this exhibits no carbonyl reactivity), and Clemmensen reduction removes both carbonyl groups ⁴⁸ to give the 12α , 20α -epoxide [VI⁴].

45 Gallagher, J. Biol. Chem., 1946, 162, 539.

 Wintersteiner, Moore, and Reinhardt, J. Biol. Chem., 1946, 162, 707.
 Klass, Fieser, and Fieser, J. Amer. Chem. Soc., 1955, 77, 3829; cf. Lardon, Sigg, and Reichstein, Helv. Chim. Acta, 1959, 42, 1957.

Steiger and Reichstein, Helv. Chim. Acta, 1938, 21, 161.

The second product [VII⁴] gives a 3β ,20 α -diacetate with acetic anhydride and shows no carbonyl reactivity; its infrared spectrum exhibits no carbonyl absorption in the range 1780—1650 cm.⁻¹. The Wolff-Kishner procedure apparently cleaves the 12α ,20 α -epoxide ring and reduces the 11-carbonyl group to afford a 3β ,11 α ,20 α -triol [VII⁴]; accordingly we regard its 5α ,6-dihydro-derivative, which gives a 3β ,20 α -diacetate with acetic anhydride, as 5α ,14 β ,17 α -pregnane-3 β ,11 α ,20 α -triol [VIII⁴], oxidised with regeneration of the 11-carbonyl group to furnish 5α ,14 β ,17 α -pregnane-3,11,20-trione [IX⁴], which yields both mono- and di-ketonic derivatives.

The third product [X⁴] arises by removal of the 11-carbonyl group, accompanied by fission of the $12\alpha,20\alpha$ -epoxide ring; Wolff-Kishner reduction of $3\alpha,12\beta$ -dihydroxy-11-oxo-5 β -cholanic acid gives analogously small quantities of 3α -hydroxy-5 β -chol-11-enic acid and 3α -hydroxy-5 β -cholanic acid (lithocholic acid).^{45, 46} The product [X⁴] could not be obtained crystalline, but by catalytic hydrogenation gave $5\alpha,14\beta,17\alpha$ -pregnane- $3\beta,20\alpha$ -diol [XI⁴], which readily gave a diacetate and was oxidised by chromium trioxide in acetic acid at 20° to $5\alpha,14\beta,17\alpha$ -pregnane-3,20-dione [XII⁴], m. p. 138—141°, $[\alpha]_{\rm p}$ +40°, identical with a synthetic specimen, m. p. 140—141°, $[\alpha]_{\rm p}$ +40°, prepared by Press and Reichstein ⁶ from 3 β -hydroxy- $5\alpha,14\beta,17\alpha$ -pregnane (diginane) [XIII⁴], m. p. 75—77°, $[\alpha]_{\rm p}$ +24°, identical with the synthetic hydrocarbon, m. p. 74—77°, $[\alpha]_{\rm p}$ +25°, prepared by Press and Reichstein.⁶

The formation of the 5α , 14β , 17α -pregnane derivatives [X⁴, XI⁴, XII⁴, XIII⁴] is explained simply and naturally by the new formula (V) for diginigenin and furnishes direct evidence for its 14β , 17α -configuration.

The integrated nuclear magnetic resonance spectrum of diginigenin acetate provides complete and convincing proof of the new formula (V) for diginigenin. It shows four protons at low field which are assigned as follows: (i) $H_{(6)}$, complex multiplet at $\tau 4.55$ for one olefinic proton; (ii) $H_{(3)}$; and (iii) $H_{(20)}$, overlapping complex multiplets centred at $\tau 5.40$ and corresponding to two protons; and (iv) $H_{(12)}$, sharp singlet at $\tau 6.08$ for one proton on carbon attached to oxidic oxygen.

The 5,6-double bond disclosed by signal (i) is confirmed chemically for diginigenin by Oppenauer oxidation of the 3β -hydroxy- Δ^5 -system to a Δ^4 -3-ketone (λ_{max} 240 m μ , log ε 4.0), and physically by molecular-rotation differences (see below).

Signals (ii) and (iii) are consistent with the presence of a 3β -hydroxyl group and the tertiary 21-methyl group already disclosed, and the former is again confirmed by molecular-rotation differences (see below). The overlapping signals prevent assignment of an exact chemical shift to the centre of the multiplet from each proton. $H_{(3)}$ absorbs in the expected region. The remainder of the two-proton band must represent $H_{(20)}$, because the signal from this proton has to be extensively split by the 21-methyl group and $H_{(17)}$; it therefore cannot be the singlet at $\tau 6.08$. The low chemical shift shows that $H_{(20)}$ must be subjected to a deshielding influence in addition to that of the adjacent oxygen atom.

Signal (iv) determines the point of attachment of the other end of the oxide bridge as $C_{(12)}$. Models indicate that the oxide bridge from $C_{(20)}$ could only be joined to $C_{(12)}$, $C_{(14)}$, or $C_{(16)}$: a sharp singlet would be expected from $H_{(12)}$ of a $C_{(12)}$ structure. The second possibility is excluded, since there would be no proton on $C_{(14)}$ to absorb at τ 6.08. The third possibility contains a four-membered oxide ring *cis*-united to ring D; the dihedral angle between $H_{(16)}$ and $H_{(17)}$ is close to 0° and splitting of *ca*. 8 c./sec.⁴⁹ should be observed for $H_{(16)}$. The appearance of a one-proton singlet therefore proves conclusively that the oxide bridge is joined to $C_{(12)}$. The atom $H_{(12)}$ is adjacent to both the 11-carbonyl group and the ether-oxygen atom and yet its signal is upfield from that of $H_{(20)}$, which is adjacent only to the ether-oxygen atom. The final structure must account for this fact.

⁴⁹ Conroy, "Advances in Organic Chemistry," Interscience Publ. Inc., New York, 1960, Vol. II, p. 310.

[1962]

The chemical evidence, namely, that diginigenin easily forms a piperonylidene derivative,⁵ is consistent with a 12,20-oxide bridge but not with a 16,20-oxide bridge, since a 12-piperonylidene derivative, required by a 16,20-oxide structure, would be expected to be formed with great difficulty if at all.

It is only possible to construct models with the 12,20-epoxide bridge if $H_{(14)}$ is β -orientated and the side chain at $C_{(17)}$ is α -orientated. This stereochemistry is in striking agreement with that disclosed by the optical rotatory dispersion measurements and with that of the known degradation products 5α , 14β , 17α -pregnane-3, 20-dione [XII⁴] and 5α , 14β , 17α pregnane [XIII⁴]. On the models the oxide bridge can be closed easily if the oxygen atom has the 12α -configuration (Va), although the more strained 12β -configuration (Vb)

appears capable of existence. No rationalisation of the relative chemical shifts of $H_{(12)}$ and $H_{(20)}$ seems possible for structure (Vb). On the other hand, the observed spectrum is explicable in terms of structure (Va) as follows. The model, which is essentially strainfree, can have two conformations of ring c: a chair form in which $H_{(12)}$ is quasi-equatorial or a boat form in which H₍₈₎ and H₍₁₂₎ form "flagpole" bonds. In the chair conformation, H₍₁₂₎ lies almost in the plane of the 11-carbonyl group and would certainly be deshielded to a greater extent than $H_{(20)}$. In the boat conformation, the dihedral angle between $H_{(12)}$ and the $C_{(11)}$ -oxygen bond is about 110° and, because of the shielding anisotropy of carbonyl functions,⁵⁰ H₍₁₂₎ would certainly not be deshielded and may even be in the region of slight positive shielding. Furthermore, if $H_{(20)}$ has the β -configuration, it is actually closer in space to the 11-carbonyl-oxygen atom than is $H_{(12)}$ and in this situation it might be expected that the 11-carbonyl group would deshield $H_{(20)}$ more than $H_{(12)}$. Deshielding of H₍₁₂₎ and H₍₂₀₎ due to the oxidic-oxygen atom would not be expected to be the same because the hydrogen atoms are not symmetric about the oxygen orbitals. If $H_{(20)}$ had the α -configuration, it would be too remote from any additional deshielding influence to account for its chemical shift. Other factors may also be operative; it is becoming recognised that tertiary hydrogen atoms in caged skeletons have abnormally low chemical shifts, but there are as yet no analogues available for comparison with diginigenin. Thus it is possible to rationalise the spectrum in terms of only one structure (Va) for diginigenin, provided that the oxide link has the 12α , 20α -configuration and ring c possesses a boat conformation. The proposed configuration of the 20-methyl group in diginigenin (Va) corresponds with that of the 20β -methyl group in cholesterol, because the latter has been related configurationally to the 20-methyl group in pregn-5-ene-36,20a-diol.⁵¹

 14α -Digipronogenin has recently been shown by Satoh ²² to be 3 β ,17 ξ -dihydroxypregn-5-ene-11,15,20-trione (VIII); it is converted by 0.02N-potassium hydroxide at 20° with inversion 52 at C_{114} into 14β , 175-digipronogenin (IX), which by acid-catalysed dehydration, selective hydrogenation of the resulting 16,17-double bond, and Oppenauer oxidation gave 14β , 17α -pregn-4-ene-3, 11, 15, 20-tetraone identical with synthetic material.²²

Digacetigenin may have the structure (X) and could be regarded as the 14β -product of

⁵⁰ Jackman, "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, London, 1959, p. 124.

⁵¹ Wieland and Miescher, *Helv. Chim. Acta*, 1949, **32**, 1922. ⁵² Cf. Elderfield, J. Biol. Chem., 1936, **113**, 631; Meyer, *Helv. Chim. Acta*, 1947, **30**, 1976; Plattner, Heusser, and Segré, *ibid.*, 1948, **31**, 249.

acetolysis of diginigenin. The small positive rotations 24 of digacetinin, digacetigenin, and related compounds indicate the 14 α -configuration for (X) and suggest a closer relationship to 14 α -digipronin (VIII).

Diginin, digifolein, lanafolein, digipronin, and possibly digacetinin are 11,15-diketones of the pregnane series; they represent a new and characteristic type of glycoside occurring in *Digitalis* species.

merendia, molecular rotation unicremee.	APPENDIX:	Molecular	rotation	differences
---	-----------	-----------	----------	-------------

		Δ value	Standard
		found	∆ value
$C_{(3)}$:	$3-H[V^4] \longrightarrow 3\beta-OH[III^4]$	4°	-2°
(6)	3β -OH- $\Delta^{5}(V) \longrightarrow 3\beta$ -OAc- Δ^{5}	34	34
	$3,3-H_2[V^4] \longrightarrow 3-CO[IV^4]$	+42	+71
C(5, 6):	3β -OH- 5α [XII ⁵] $\longrightarrow 3\beta$ -OH- Δ ⁵ (V)	-335	-298
	3β -OH- 5α [III ⁴] $\longrightarrow 3\beta$ -OH- Δ ⁵ [II ⁴]	-263	-298
C(15):	$15 \cdot H[IV^4] * \longrightarrow 15\beta \cdot OH[VII^2]$	+130	
	15β -OH[VII ²] \longrightarrow 15β -OAc[VII ²]	-78	
	15β -OH(VI) \longrightarrow 15-CO(V)	-574	
	Dihydrodigifolein — \rightarrow digifolein (15 β -OH — \rightarrow 15-CO)	-523	
	Dihydrolanafolein — lanafolein (15 β -OH — 15-CO)	-442	
	Dihydrodigifologenin — digifologenin (15 β -OH — 15-CO)	-516	

* $[M]_D$ computed from the 3β -hydroxy-analogue of $[IV^4]$ by subtraction of the standard Δ value $+73^{\circ}$.

EXPERIMENTAL

For general directions see J., 1959, 345; $[\alpha]_D$ are for acetone solutions; ultraviolet absorption spectra were measured for EtOH solutions in a Perkin–Elmer 4000A spectrophotometer; infrared absorption spectra were determined for CHCl₃ solutions in a Perkin–Elmer model 221 double-beam instrument. Analytical samples were dried at 70°/0.5 mm. for 5 hr. Nuclear magnetic resonance spectra were determined on a Varian DP 60 instrument at 60 Mc./sec., with deuterochloroform as solvent and tetramethylsilane as internal reference; the charts were calibrated by the audio side-band technique.

Diginin.—The original specimen,² m. p. 155—183°, had λ_{max} 310 mµ (log ε 2·0) and ν_{max} 3585, 1735, 1712, 1655, 1095, 1060, 1032, 891, 872, 853 cm.⁻¹ when measured in 1956; an earlier spectrum taken in 1949 showed ν_{max} 3595, 1737, 1715, 1650 cm.⁻¹; optical rotatory dispersion: in methanol, $[M] - 13,650^{\circ}$ (335 mµ, trough), $+11,100^{\circ}$ (292·5 mµ, peak).

Diginigenin.—(a) Diginin (250 mg.) in methanol (7.5 ml.) was treated with 36N-sulphuric acid (0.4 ml.) in water (7.5 ml.) on the steam-bath for 0.5 hr. The solution was concentrated to ~7 ml. at 35°/10 mm., diluted with water, and extracted with chloroform. After being washed with ice-cold 0.5N-sodium hydroxide and with water, the solution was rapidly dried (Na₂SO₄) and then evaporated. The product did not crystallise during several days in methanol at 0° and, after removal of the solvent, was chromatographed on a column of neutral aluminium oxide (5 g.; Woelm) prepared in benzene. Elution with ether (6 × 20 ml.) and with chloroform (3 × 20 ml.) gave diginigenin (180 mg.), m. p. 104—108° (from ether-pentane), v_{max} . 3610, 1733, 1710, 1680w, λ_{max} . 238 mµ (log ε 3.05). Optical rotatory dispersion: in MeOH, [M] -12,300° (337.5 mµ, trough), +10,300° (292.5—290 mµ, peak).

The original specimen of diginigenin,² m. p. 115° (prepared in 1940 and sealed in a high vacuum), had λ_{max} . 310 m μ (log ε 1.93), ν_{max} . 3585, 1735, 1712, and 1655 cm.⁻¹, when measured by Dr. R. Norman Jones in 1949.

(b) Diginin (300 mg.) in methanol (7 ml.) was treated under nitrogen with 0.5N-sulphuric acid (7 ml.) on the steam-bath for 0.5 hr. Concentration of the solution to 7 ml. under reduced pressure, followed by chloroform extraction, gave a light brown oil, which was dried by repeated azeotropic distillation with benzene (5 × 20 ml.) at 10 mm., to give diginigenin (220 mg.) as prisms (from anhydrous ether), m. p. 151–153°, giving a positive test with tetranitromethane in chloroform and reducing Tollens's reagent at once at 20° [M (mass spectrometry) = 344], $[\alpha]_{\rm p} -227^{\circ}$ (c 1.0), $\nu_{\rm max}$. 3609, 1733, 1709, 1656, 1140, 1080, 1070, 1040, 890, 870 cm.⁻¹, $\lambda_{\rm max}$. 310 mµ (log ε 1.93) (Found: C, 72.85; H, 8.2. Calc. for C₂₁H₂₈O₄: C 73.2; H, 8.2%).

(c) The residues (200 mg.) from a previous hydrolysis of diginin, performed in 1940 by Shoppee,² were purified by chromatography on neutral aluminium oxide (5 g.) in benzene. Elution with chloroform-ether (1:20; 10×20 ml.), followed by azeotropic distillation of the eluted material with benzene at 10 mm., gave diginigenin (120 mg.), m. p. and mixed m. p. 151-153° [from anhydrous ether after seeding with the sample obtained as in (b)]. Further elution with chloroform (5 × 20 ml.) gave crystalline fractions, m. p. 160-172°, thought to be mainly digifologenin (lit.,¹⁸ 176°) since digifolein has been shown to be present in the original glycoside.

Diginigenin Monoacetate.—(a) Diginigenin (m. p. 102—108°) (25 mg.) in pyridine (0.5 ml.) was treated with acetic anhydride (0.5 ml.) at 20° for 1 hr. After complete evaporation of the reagents at 10 mm. and then at 0.5 mm., diginigenin monoacetate (16 mg.) crystallised from acetone-pentane and had m. p. 165—170°, v_{max} 1735, 1708 cm.⁻¹; the 1735 cm.⁻¹ peak (5-ring CO + COMe) had double the intensity of the 1708 cm.⁻¹ peak (6-ring CO).

(b) Diginigenin, m. p. 151—153° (25 mg.), was treated as in (a) with acetic anhydride in pyridine. Complete evaporation of the reagents, followed by recrystallisation of the solid residue from acetone-pentane, gave diginigenin monoacetate (19 mg.), m. p. 175—178° (lit.,³ 178°). The infrared absorption spectrum was identical with that of the sample prepared as in (a). The original specimen of diginigenin acetate,² m. p. 178°, had v_{max} (in CHCl₂) 1735, 1716, 1660 cm.⁻¹ (in CS₂), 1745, 1720, 1666 cm.⁻¹ when measured by Dr. R. Norman Jones in 1949 using a calcium fluoride prism.

Diginigenone.—Diginigenin (20 mg. of residues) and aluminium isopropoxide (50 mg.) in dry acetone (5 c.c.) and benzene (5 c.c.) were heated under reflux for 18 hr. The cooled solution was poured into 2N-sulphuric acid and extracted with benzene, and the extract dried and evaporated to an oil (10 mg.), λ_{max} . 240 m μ (log ε 4.0).

15-Deoxy-15-hydroxydiginigenin (Dihydrodiginigenin).—Diginigenin, m. p. 151—153° (50 mg.), in methanol (1 ml.) was treated with sodium borohydride (14 mg.) in methanol (2 ml.) at 20° for 1 hr. Acidification with 2N-sulphuric acid and extraction with chloroform gave 15-deoxy-15-hydroxydiginigenin (45 mg.), m. p. 95°, crystallising from ether with 0.5 mol. of water, as needles, m. p. 175—179°, $[\alpha]_{\rm D}$ —60° (c 0.9 in acetone), and giving a positive test with nitromethane in chloroform and a negative test with Tollens's reagent (Found: C, 70.9; H, 8.7. C₂₁H₃₀O₄, $\frac{1}{2}$ H₂O requires C, 71.0; H, 8.75%); it had v_{max}. 3610, 3520, 1710, 1670, 1092, 1085, 1062, 1037, 890 cm.⁻¹, $\lambda_{\rm max}$. 302 mµ (log ε 1.54). Optical rotatory dispersion: in MeOH, [M] -1600° (327.5—325 mµ, trough), +1780° (285—282.5 mµ, peak).

15-Deoxy-5 α ,6-dihydro-15-hydroxydiginigenin (Tetrahydrodiginigenin).—Diginigenin, m. p. 102—108° (50 mg.), in acetic acid (5 ml.) was added to a suspension of pre-reduced platinum oxide (25 mg.) in acetic acid (5 ml.) and shaken with hydrogen for 4 hr. Filtration and evaporation of the filtrate gave the product as needles (from methanol), m. p. 229—231°, $[\alpha]_p + 39°$ (c 0.9) (lit.^{2, 5} 229—231°, +37°), ν_{max} . 3680, 3609, 1708, 1065, 1040, 1020 cm.⁻¹. Optical rotatory dispersion: in MeOH, [M] -2495° (330 m μ , trough), +342° (290 m μ , shortest wavelength reached). The substance gave no colour with tetranitromethane in chloroform; it was too insoluble to permit determination of the infrared spectrum in CHCl₃ or CS₉.

Digifolein.—Isolated from extracts of leaves of *D. lanata* by chromatography on aluminium oxide in benzene and elution with chloroform, digifolein had m. p. 198—202°, $[\alpha]_p - 220^\circ$ (c 1.0 in CHCl₃). This material (Found: C, 66.3; H, 8.05. Calc. for C₂₈H₄₀O₈: C, 66.6; H, 8.0%) was homogeneous on paper chromatography with the system isobutyl methyl ketone-isopropyl ether saturated with formamide, development being with antimony trichloride in formamide.

One of us (C. W. S.) gratefully acknowledges discussion in 1948 of molecular-rotation differences with Professor D. H. R. Barton, F.R.S., and Professor W. Klyne. We also sincerely thank: Dr. Cannon (British Nylon Spinners, Ltd.) for the determination in 1949 of the infrared spectrum of diginin and the infrared spectra of diginigenin acetate and compounds [II⁴], [III⁴]; Professor W. Klyne for recording the optical rotatory dispersion curves and for helpful comments thereon; Dr. Neil McNiven (Worcester Foundation for Experimental Biology, Worcester, Mass.), Mr. Robert Bradley (The National Institutes of Health, Bethesda, Md.), and Dr. S. Sternhell (Coal Research Division, C.S.I.R.O.) for the nuclear magnetic resonance spectra; Dr. J. Shannon (Coal Research Division, C.S.I.R.O.) for the mass spectra; Burroughs Wellcome & Co. Ltd. for a gift of extracts of leaves of D. lanata; and Mrs. Sandes of that organization for information concerning paper chromatography.

Department of Organic Chemistry, The University of Sydney, Australia.

[Received, January 8th, 1962.]